
ALASKA DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS

5

Maps Showing Location of Study Area

Map Unit*	Component Geologic Units**	Surface drainage	Seasonal frost susceptibility	Permafrost and that
A1	Qa, Qaa	Well drained near steep stream banks and where water table is deep; seasonally flooded	Subject to deep, dry freezing where coarse grained and water table is deep; subject to intense frost heaving where silty	Unfrozen to discontinuously fro moderate ice content where silty unstable where silty and perenni
A2	Qai	Generally poor due to shallow water table and shallow permafrost; moderate to good on natural levees and crevasse fills	Generally subject to intense heaving in fine- grained cover deposits and channel fills; otherwise, generally not susceptible unless silty	Unfrozen in younger areas to dia areas, generally with low to mod high ice content in frozen organ channel fills; thaw unstable whe
A3	Qab	Generally poor due to widespread shallow permafrost	Subject to intense heaving in fine-grained cover deposits and silty channel fills; not susceptible where coarse grained	Generally frozen with low to mo high ice content in frozen surfac sand and silt channel fills; thaw frozen and ice rich
A4	Qat, Qft, Qfte	Good near descending scarps; fair to poor away from scarps; subject to local flooding	Intense in fine-grained cover sediments and silty channel fills; not susceptible where coarse grained	Continuously to discontinuously moderate ice content; high ice c surface peat; thaw unstable whe
A5	Qaf	Generally good, except in frozen distal zones	Intense in fine-grained cover deposits and silty zones, otherwise not frost susceptible	Unfrozen to discontinuously fro grained distal zones, where pern ice contents low to moderate; th fine grained
A6	Qer, Qfs	Generally poor; may be seasonally flooded	Intense	Permafrost is discontinuous to c moderate to high ice content; the
F	Qfb, Qfbe	Generally excellent to good, except moderate to poor in areas of ground water emergence or where shallowly frozen	Intense in fine-grained cover sediments; otherwise, not susceptible	Unfrozen to discontinuously fro moderate ice content; generally unstable where silty
С	Qc, Qca, Qcd, Qcf, Qcg, Qcl, Qcr, Qct, Qcft,	Generally good	Susceptible where silty	Unfrozen to discontinuously fro moderate ice content; generally where silty
E1	Qel	Generally good, except poorly drained where frozen	Intense where moist to wet; low where dry	Generally unfrozen, except disc continuously frozen with moder content on lower south-facing as slopes; thaw unstable where ice to high
E2	Qes	Generally good, except poorly drained where covered with frozen silt	Generally unsusceptible, except in silty cover deposits	Generally unfrozen to dry frozen sediments are discontinuously to and locally ice rich
G1	QTgdp, Qgdo, Qgdy, Qgdh	Generally good on upland surfaces and poor in depressions	Generally low susceptibility where well drained, moderate to intense where matrix is silty and in silty slopewash in depressions	Unfrozen to discontinuously fro moderate ice contents, dependin matrix; generally thaw stable, es unstable in silty tills and silty ke
G2	Qgfo, Qgfy, Qgfh, Qgfyy	Good	Generally unsusceptible, except intense in silty cover deposits	Unfrozen to discontinuously fro content
L1	Qlb	Very poor; subject to seasonal flooding	Intense	Discontinuous to continuous per moderate to high ice content; that
L2	Qlr	Generally good, but variable	Intense if wet or moist	Unfrozen to discontinuously fro moderate ice content; thaw unsta and ice rich
Р	Qp	Generally very poor; subject to seasonal flooding	Intense	Discontinuous to continuous per moderate to very high ice conter
B	b, b', b+b', (Qc), (Qcf)	Generally poor except where highly broken	Low, except where rock is highly weathered or fractured; intense in silty colluvium in mixed units	Generally thaw stable, except w extensive fracture spaces or in s mixed units

*Not all units will appear on each map **Derived from geologic units in Reger and others (2010).

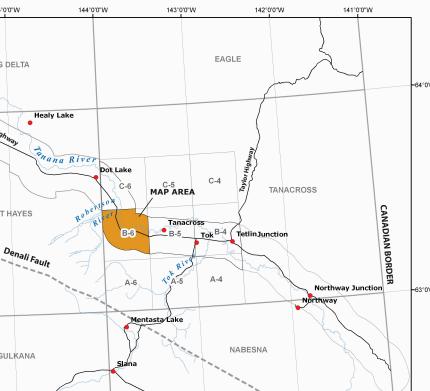
INTRODUCTION

This map is derived electronically from the surficial-geologic map of the central corridor segment (Reger and others, 2010) using Geographic Information System (GIS) software. Surficial-geologic units were initially identified by interpretation of ~1:65,000-scale false-color infrared aerial photographs taken in July 1978, August 1980, and August 1981 and locally verified by field checking in 2008. The map shows the distribution of surficial-geologic and bedrock units grouped genetically with common properties that are typically significant for engineering applications:

- A Alluvial deposits F – Flood deposits
- C Colluvial deposits E – Eolian deposits
- G Glacial deposits
- L Lake deposits
- P Paludal peat deposits B – Bedrock and residual

The table above lists generalized properties of these groups, including surface drainage, effects of seasonal freezing, the presence of perennially frozen ground and the consequences of thawing, stability of slopes, suitabilities and limitations of material for construction purposes, and potential constraints. Physical properties of map units are interpretive, based on extrapolation from verified localities and from previously published reports and data. Potential geologic hazards are inferred from the typical physical properties of map units, including sediment texture and ground-ice content, and their typical topographic settings. Except for a few test pits, no subsurface investigations or laboratory analyses were performed for this publication. The reader is cautioned that this map is intended only as a general guide and that unevaluated geologic resources and hazards could be present. Detailed geotechnical investigations should be conducted prior to utilization of any map units for engineering purposes.

MAP SYMBOLS


———— PHOTOINTERPRETIVE BOUNDARY—All boundaries are inferred or approximately located

LAKE

ENGINEERING-GEOLOGIC MAP, ALASKA HIGHWAY CORRIDOR, PART OF THE TANACROSS B-6 QUADRANGLE, ALASKA

> by T.D. Hubbard¹ and R.D. Reger², 2010

> > Affiliations ¹ Alaska Division of Geological & Geophysical Surveys ² Reger's Geologic Consulting, Soldotna, Alaska

PRELIMINARY INTERPRETIVE REPORT 2009-6b Hubbard and Reger (2010) SHEET 2 of 4

afrost and thaw stability	Slope stability	Suitability for construction	Potential engineering considerations
ontinuously frozen with low to tent where silty; may be thaw ilty and perennially frozen	Highly susceptible to lateral erosion and collapse near active channels	Excellent source of clean, sandy gravel aggregate and clean fill material; may be poorly graded; well- drained sand and gravel provide excellent foundations	Subject to inundation every 1–5 years during high stream stages (Chapin and others, 2006) and by aufeis in braided reaches; shallow water table limits depth of excavation; thawed fine sand and silt subject to liquefaction; responses to seismic shaking may vary considerably, especially near frozen zones
nger areas to discontinuous in older with low to moderate ice contents; in frozen organic sand and silt w unstable where frozen and ice rich	Highly susceptible to lateral erosion and collapse near active channels; subject to differential settlement when thawed	Where thawed, excellent source of sandy gravel aggregate beneath silty surface layer; presence of permafrost and shallow water table may limit potential as source of sandy gravel aggregate and suitability for foundations	Subject to inundation at least once or twice every 100 years (Chapin and others, 2006; Yarie and others, 1998); shallow water table limits depth of excavation; where thawed, fine sand and silt subject to liquefaction; responses to seismic shaking may vary considerably.
with low to moderate ice content; in frozen surface peats and organic nnel fills; thaw unstable where ch	Susceptible to lateral erosion and collapse near active channels; subject to differential settlement when thawed	Widespread permafrost and shallow water table limit potential as source of sandy gravel aggregate and suitability for foundations	Subject to inundation every 500 to 1,000 years (Mann and others, 1995; Mason and Begét, 1991); shallow water table and presence of permafrost limit depth of excavation; subject to liquefaction where thawed; responses to seismic shaking may vary considerably; sensitive to surface disturbance
discontinuously frozen with low to ttent; high ice content in frozen w unstable where frozen and ice rich	Susceptible to lateral erosion and collapse near active channels; frozen zones subject to differential settlement when thawed	Excellent source of sand and gravel beneath fine- grained cover sediments, although shallow permafrost may limit depth of excavation; excellent foundations where thawed	Bedrock shallow in strath terraces; locally subject to seasonal slope and stream flooding; where saturated, fine-grained cover sediments subject to liquefaction; seismic shaking may vary considerably, especially near frozen zones; locally sensitive to surface disturbance areas of groundwater emergence may be subject to seasonal surface icings and saturated soil conditions
ontinuously frozen, except in fine- nes, where permafrost is continuous; to moderate; thaw unstable where	Subject to lateral erosion and collapse near active channels and in proximal zone of fan	Generally unsuitable as aggregate source because of numerous boulders, high silt content, and permafrost; moderate suitability for foundations	Proximal zones subject to torrential flooding, snow avalanches, debris flows, and mudflows; subject to sudden shifts in channels and sites of deposition and erosion
continuous to continuous with ice content; thaw unstable	Highly susceptible to gullying and piping when vegetation is removed; subject to differential settlement when thawed	Source of organic material for landscaping; suitable for foundations only when permafrost is preserved	Thawing produces mudflows and hyperconcentrated flows; subject to seasonal stream and slope icings; sensitive to surface disturbance
ontinuously frozen with low to tent; generally thaw stable, except ilty	Subject to lateral erosion and collapse near active channels	Good source of sand and gravel; large flood boulders generally rare; excellent foundation material	Bedrock shallow in strath terraces; areas of groundwater emergence may be subject to seasonal surface icings and saturated soil conditions
ontinuously frozen with low to ttent; generally thaw stable, except	Unstable where slope processes are active or toe or margin of slope is removed; locally subject to sloughing and sliding; subject to snow avalanching and rock falls	Generally unsuitable as aggregate source because numerous large, angular fragments require special handling; where frozen, may require ripping or blasting; poor foundations where blocks are loose and unstable to good foundations where coarse and fine fractions are mixed and stable	May become unstable if margins or toe removed; active slope processes may have deleterious impacts
ren, except discontinuously to zen with moderate to high ice south-facing and on north-facing table where ice content is moderate	Highly susceptible to gullying and piping; subject to differential settlement upon thawing where frozen and ice-rich	Source of fines for landscaping and mixing; makes good foundations where thawed and dry; muddy when wet; dusty when dry	Vertical cuts can be stable if drainage is provided; ice-rich areas sensitive to surface disturbance
en to dry frozen, except silty cover scontinuously to continuously frozen ch	Highly susceptible to gullying and deflation where vegetation cover is disturbed	Difficult to compact for foundations; source of sand for landscaping and mixing	Subject to deflation where unprotected
ontinuously frozen with low to tents, depending on silt content of / thaw stable, except may be thaw tills and silty kettle fillings	Generally stable where frozen or dry; subject to instability where fine-grained tills are thawed and ice content is moderate to high	Highly variable but can be good local source of mixed coarse and fine fractions for fill; local sources of water-washed sand and gravel; good foundations where thawed and dry	Subject to gullying where surface runoff is concentrated
ontinuously frozen with low ice	Subject to lateral erosion and collapse near active channels, steep cut faces subject to raveling	Excellent source of sand and gravel; excellent foundations	Easily compacted, although locally contains numerous large boulders
o continuous permafrost with i ice content; thaw unstable	Subject to lateral thermoerosion and collapse near active channels	Generally unsuitable; muddy when wet	Subject to seasonal flooding during high stream stages
ontinuously frozen with low to ntent; thaw unstable where frozen	Subject to differential settlement where frozen and ice rich	Possible low-volume source of sandy gravel and organic material for landscaping; generally unsuitable for foundations	Subject to ice shoving in winter near lake shores
o continuous permafrost with high ice content; thaw unstable	Subject to lateral erosion and collapse near active channels; subject to subsidence when thawed	Source of organic material for landscaping; unsuitable for foundations unless permafrost is preserved	Difficult to excavate and compact; subject to seasonal slope and stream icings
stable, except where ice forms in e spaces or in silty colluvium in	Generally stable, except where orientation of joints, fractures, or foliation may cause failure; locally subject to sloughing and sliding in colluvium on mixed units; snow avalanching and rock falls active in steep terrain	Can be good source for crushed aggregate and rip rap where rock is hard, fresh, and not highly fractured	Quality of rock will vary depending on lithology, degree of weathering, and fracturing; local zones of weathering or shearing may be clay rich; colluvium only becomes unstable where undercut or fractured in mixed units; in steep terrain subject to deleterious impacts from colluvial processes, including snow avalanches and rock falls
	1	1	

ACKNOWLEDGMENTS

The authors gratefully acknowledge the helpful review by De Anne Stevens, and able cartographic assistance by Gail Davidson, Patricia Gallagher, Garrett Speeter, Kyle Obermiller and Rachel Westbrook. Funding for this project is from the State of Alaska FY08 and FY09 Capital Improvement Projects. **REFERENCES CITED**

- Chapin, F.S., III, Viereck, L.A., Adams, P.C., Van Cleve, Keith, Fastie, C.L., Ott, R.A., Mann, Daniel, and Johnston, J.F., 2006, Successional processes in the Alaska boreal forest, in Chapin, F.S., III, Oswood, M.W., Van Cleve, Keith, Viereck, L.A., and Verbyla, D.L., eds., Alaska's changing boreal forest: Oxford, England, Oxford University Press, p. 100-120.
- Mann, D.H., Fastie, C.L., Rowland, E.L., and Bigelow, N.H., 1995, Spruce succession, disturbance, and geomorphology on the Tanana River floodplain, Alaska: Ecoscience, v. 2, no. 2, p. 184–199.
- Mason, O.K., and Begét, J.E., 1991, Late Holocene flood history of the Tanana River, Alaska, U.S.A.: Arctic and Alpine Research, v. 23, no. 4, p. 392–403.
- Reger, R.D., Hubbard, T.D., and Carver, G.A., 2010, Surficial geology of the Alaska Highway Corridor, Robertson River to Tetlin Junction, Alaska: Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2009-6a, 55 p., 4 sheets, scale 1:63,360.
- Yarie, John, Viereck, Leslie, Van Cleve, Keith, and Adams, Phyllis, 1998, Flooding and ecosystem dynamics along the Tanana River: BioScience, v. 48, no. 9, p. 690-695.

The State of Alaska makes no express or implied warranties (including warranties for merchantability and fitness) with respect to the character, functions, or capabilities of the electronic data or products or their appropriateness for any user's purposes. In no event will the State of Alaska be liable for any incidental, indirect, special, consequential, or other damages suffered by the user or any other person or entity whether from the use of the electronic services or products, or any failure thereof or otherwise. In no event will the State of Alaska's liability to the Requestor or anyone else exceed the fee paid for the electronic service or product.

- DGGS publications can be purchased or ordered from the Fairbanks office at: Alaska Division of Geological & Geophysical Surveys 3354 College Road Fairbanks, AK 99709-3707
- 451-5000 (phone) dggspubs@alaska.gov http://www.dggs.alaska.gov

451-5050 (fax)

Department of Natural Resources Division of Geological & Geophysical Surveys